Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
Abstract
All miscellaneous studies
Meta analysis
 
Feedback
Home
next
study
previous
study
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Recent:   

SARS-CoV-2 infection triggers pro-atherogenic inflammatory responses in human coronary vessels

Eberhardt et al., Nature Cardiovascular Research, doi:10.1038/s44161-023-00336-5
Sep 2023  
  Post
  Facebook
Share
  Source   PDF  
Autopsy study providing evidence that SARS-CoV-2 infects and replicates within coronary artery macrophages in severe COVID-19 patients. Using RNA fluorescence in situ hybridization (FISH) and artificial intelligence-based image analysis, the authors detected SARS-CoV-2 viral RNA in macrophages infiltrating all examined coronary arteries, with higher replication in early atherosclerotic lesions containing lipid-laden “foam cell” macrophages. In vitro, the virus readily infected primary human macrophages and foam cells abortively, inducing proinflammatory cytokines implicated in cardiovascular events. Vascular explant experiments confirmed that SARS-CoV-2 infection elicits inflammation within atherosclerotic plaques. The findings suggest direct SARS-CoV-2 infection of coronary vessels may trigger inflammatory responses underlying acute cardiovascular complications of COVID-19.
Eberhardt et al., 28 Sep 2023, USA, peer-reviewed, mean age 69.6, 23 authors, study period May 2020 - May 2021. Contact: chiara.giannarelli@nyulangone.org.
This PaperMiscellaneousAll
SARS-CoV-2 infection triggers pro-atherogenic inflammatory responses in human coronary vessels
Natalia Eberhardt, Maria Gabriela Noval, Ravneet Kaur, Letizia Amadori, Michael Gildea, Swathy Sajja, Dayasagar Das, Burak Cilhoroz, O’ Jay Stewart, Dawn M Fernandez, Roza Shamailova, Andrea Vasquez Guillen, Sonia Jangra, Michael Schotsaert, Jonathan D Newman, Peter Faries, Thomas Maldonado, Caron Rockman, Amy Rapkiewicz, Kenneth A Stapleford, Navneet Narula, Kathryn J Moore, Dr Chiara Giannarelli
Nature Cardiovascular Research, doi:10.1038/s44161-023-00336-5
was lower compared to the number of infected macrophages. To further investigate SARS-CoV-2 infection of VSMCs and lipid-laden VSMCs, which are associated with atherosclerosis 17-20 , we infected primary human aortic VSMCs, as well as VSMCs loaded with cyclodextrincholesterol complexes (Extended Data Fig. 2d ), with the SARS-CoV-2 USA WA1/2020 isolate. Approximately 18% of cultured VSMCs and Article https://doi.org/10.1038/s44161-023-00336-5 13% of cholesterol-loaded VSMCs were S + , and the frequency of S antisense + ACTA2 + cells, indicating viral replication, was ~2.6% (Extended Data Fig. 2d, e ). Taken together with our in vitro findings, which indicate that more than 79% of macrophages and over 90% of foam cells are S+, along with the discovery that more than 40% of both cell types are S antisense+, these results show that, although SARS-CoV-2 can infect VSMCs, macrophages are infected at a higher rate.
Reporting summary Further information on research design is available in the Nature Portfolio Reporting Summary linked to this article. Author contributions Reporting Summary Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist. Statistics For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section. n/a Confirmed The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly The statistical test(s) used AND whether they are one-or two-sided Only common tests should be described solely by name; describe more complex techniques in the Methods section. A description of all covariates tested A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals) For null hypothesis testing, the test statistic..
References
Allahverdian, Chehroudi, Mcmanus, Abraham, Francis, Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis, Circulation
Bajpai, The human heart contains distinct macrophage subsets with divergent origins and functions, Nat. Med
Bastard, Autoantibodies against type I IFNs in patients with life-threatening COVID-19, Science
Bizzotto, SARS-CoV-2 infection boosts MX1 antiviral effector in COVID-19 patients, iScience
Blanco-Melo, Imbalanced host response to SARS-CoV-2 drives development of COVID-19, Cell
Brewer, Majesky, Branch point smooth muscle cells highlighted by novel lineage tracking approach, Circ. Res
Cantuti-Castelvetri, Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity, Science
Chen, Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool, BMC Bioinformatics
Cheng, IL-27 induces IFN/STAT1-dependent genes and enhances function of TIGIT + HIVGag-specific T cells, iScience
Cloherty, Olmstead, Ribeiro, Jean, Hijacking of lipid droplets by hepatitis C, dengue and Zika viruses-from viral protein moonlighting to extracellular release, Int. J. Mol. Sci
Cohen, Avital, Shamay, Kobiler, Abortive herpes simplex virus infection of nonneuronal cells results in quiescent viral genomes that can reactivate, Proc. Natl Acad. Sci. USA
Collins, Chen, Kalams, Walker, Baltimore, HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes, Nature
Combe, Garijo, Geller, Cuevas, Sanjuan, Single-cell analysis of RNA virus infection identifies multiple genetically diverse viral genomes within single infectious units, Cell Host Microbe
Dai, A novel role for myeloid cell-specific neuropilin 1 in mitigating sepsis, FASEB J
Daly, Neuropilin-1 is a host factor for SARS-CoV-2 infection, Science
Dann, Henderson, Teichmann, Morgan, Marioni, Differential abundance testing on single-cell data using k-nearest neighbor graphs, Nat. Biotechnol
Domizio, The cGAS-STING pathway drives type I IFN immunopathology in COVID-19, Nature
Engelen, Robinson, Zurke, Monaco, Therapeutic strategies targeting inflammation and immunity in atherosclerosis: how to proceed?, Nat. Rev. Cardiol
Fajgenbaum, June, Cytokine storm, N. Engl. J. Med
Feil, Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis, Circ. Res
Fernandez, Single-cell immune landscape of human atherosclerotic plaques, Nat. Med
Garcia-Nicolas, Godel, Zimmer, Summerfield, Macrophage phagocytosis of SARS-CoV-2-infected cells mediates potent plasmacytoid dendritic cell activation, Cell. Mol. Immunol
Hansen, Bouvier, MHC class I antigen presentation: learning from viral evasion strategies, Nat. Rev. Immunol
Hao, Integrated analysis of multimodal single-cell data, Cell
Heaton, Randall, Multifaceted roles for lipids in viral infection, Trends Microbiol
Heldt, Kupke, Dorl, Reichl, Frensing, Single-cell analysis and stochastic modelling unveil large cell-to-cell variability in influenza A virus infection, Nat. Commun
Hoffmann, SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell
Ioannidis, Verity, Crawford, Rockman, Brown, Abortive replication of influenza virus in mouse dendritic cells, J. Virol
Janeway, Jr, Medzhitov, Innate immune recognition, Annu. Rev. Immunol
Katsoularis, Fonseca-Rodriguez, Farrington, Lindmark, Fors Connolly, Risk of acute myocardial infarction and ischaemic stroke following COVID-19 in Sweden: a self-controlled case series and matched cohort study, Lancet
Kim, Transcriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine models, Circ. Res
Korsunsky, Fast, sensitive and accurate integration of single-cell data with Harmony, Nat. Methods
Kuleshov, Enrichr: a comprehensive gene set enrichment analysis web server 2016 update, Nucleic Acids Res
Kuznetsova, Prange, Glass, De Winther, Transcriptional and epigenetic regulation of macrophages in atherosclerosis, Nat. Rev. Cardiol
Kwong, Acute myocardial infarction after laboratory-confirmed influenza infection, N. Engl. J. Med
Kyrou, Randeva, Spandidos, Karteris, Not only ACE2-the quest for additional host cell mediators of SARS-CoV-2 infection: neuropilin-1 (NRP1) as a novel SARS-CoV-2 host cell entry mediator implicated in COVID-19, Signal Transduct. Target. Ther
Lamers, Haagmans, SARS-CoV-2 pathogenesis, Nat. Rev. Microbiol
Lazear, Schoggins, Diamond, Shared and distinct functions of type I and type III interferons, Immunity
Lindner, Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases, JAMA Cardiol
Liu, SARS-CoV-2 cell tropism and multiorgan infection, Cell Discov
Lucas, Longitudinal analyses reveal immunological misfiring in severe COVID-19, Nature
Martinez-Colon, SARS-CoV-2 infection drives an inflammatory response in human adipose tissue through infection of adipocytes and macrophages, Sci. Transl. Med
Merkler, Risk of ischemic stroke in patients with Coronavirus Disease 2019 (COVID-19) vs patients with influenza, JAMA Neurol
Minkoff, Tenoever, Innate immune evasion strategies of SARS-CoV-2, Nat. Rev. Microbiol
Moore, Sheedy, Fisher, Macrophages in atherosclerosis: a dynamic balance, Nat. Rev. Immunol
Munnur, Altered ISGylation drives aberrant macrophage-dependent immune responses during SARS-CoV-2 infection, Nat. Immunol
Narula, Olin, Narula, Pathologic disparities between peripheral artery disease and coronary artery disease, Arterioscler. Thromb. Vasc. Biol
Nilsson-Payant, The NF-κB transcriptional footprint is essential for SARS-CoV-2 replication, J. Virol
Noval, Antibody isotype diversity against SARS-CoV-2 is associated with differential serum neutralization capacities, Sci Rep
Otsuka, Natural progression of atherosclerosis from pathologic intimal thickening to late fibroatheroma in human coronary arteries: a pathology study, Atherosclerosis
Prelli Bozzo, IFITM proteins promote SARS-CoV-2 infection and are targets for virus inhibition in vitro, Nat. Commun
Ridker, Antiinflammatory therapy with canakinumab for atherosclerotic disease, N. Engl. J. Med
Ridker, Rane, Interleukin-6 signaling and anti-interleukin-6 therapeutics in cardiovascular disease, Circ. Res
Robbins, Local proliferation dominates lesional macrophage accumulation in atherosclerosis, Nat. Med
Rong, Shapiro, Trogan, Fisher, Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading, Proc. Natl Acad. Sci. USA
Saccon, SARS-CoV-2 infects adipose tissue in a fat depot-and viral lineage-dependent manner, Nat. Commun
Sefik, Inflammasome activation in infected macrophages drives COVID-19 pathology, Nature
Seth, Sun, Ea, Chen, Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF 3, Cell
Shankman, KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis, Nat. Med
Solomon, Mueller, Chae, Alabanza, Bynoe, Neuropilin-1 attenuates autoreactivity in experimental autoimmune encephalomyelitis, Proc. Natl Acad. Sci
Stein, SARS-CoV-2 infection and persistence in the human body and brain at autopsy, Nature
Tenoever, The evolution of antiviral defense systems, Cell Host Microbe
Theken, Tang, Sengupta, Fitzgerald, The roles of lipids in SARS-CoV-2 viral replication and the host immune response, J. Lipid Res
Wang, Clonally expanding smooth muscle cells promote atherosclerosis by escaping efferocytosis and activating the complement cascade, Proc. Natl Acad. Sci. USA
Wang, Interleukin 18 function in atherosclerosis is mediated by the interleukin 18 receptor and the Na-Cl co-transporter, Nat. Med
Wang, Programmed death ligand 1 expression and tumor infiltrating lymphocytes in neurofibromatosis type 1 and 2 associated tumors, J. Neurooncol
Wirka, Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis, Nat. Med
Xie, An infectious cDNA clone of SARS-CoV-2, Cell Host Microbe
Xie, Xu, Bowe, Al-Aly, Long-term cardiovascular outcomes of COVID-19, Nat. Med
Zernecke, Bernhagen, Weber, Macrophage migration inhibitory factor in cardiovascular disease, Circulation
Zhu, Yongky, Yin, Growth of an RNA virus in single cells reveals a broad fitness distribution, Virology
{ 'indexed': {'date-parts': [[2024, 1, 22]], 'date-time': '2024-01-22T09:54:28Z', 'timestamp': 1705917268306}, 'reference-count': 71, 'publisher': 'Springer Science and Business Media LLC', 'issue': '10', 'license': [ { 'start': { 'date-parts': [[2023, 9, 28]], 'date-time': '2023-09-28T00:00:00Z', 'timestamp': 1695859200000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0'}, { 'start': { 'date-parts': [[2023, 9, 28]], 'date-time': '2023-09-28T00:00:00Z', 'timestamp': 1695859200000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0'}], 'funder': [ { 'DOI': '10.13039/100000050', 'name': 'U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood ' 'Institute', 'doi-asserted-by': 'publisher', 'award': ['R01HL165258']}], 'content-domain': {'domain': ['link.springer.com'], 'crossmark-restriction': False}, 'abstract': '<jats:title>Abstract</jats:title><jats:p>Patients with coronavirus disease 2019 (COVID-19) ' 'present increased risk for ischemic cardiovascular complications up to 1\u2009year after ' 'infection. Although the systemic inflammatory response to severe acute respiratory syndrome ' 'coronavirus 2 (SARS-CoV-2) infection likely contributes to this increased cardiovascular ' 'risk, whether SARS-CoV-2 directly infects the coronary vasculature and attendant ' 'atherosclerotic plaques remains unknown. Here we report that SARS-CoV-2 viral RNA is ' 'detectable and replicates in coronary lesions taken at autopsy from severe COVID-19 cases. ' 'SARS-CoV-2 targeted plaque macrophages and exhibited a stronger tropism for arterial lesions ' 'than adjacent perivascular fat, correlating with macrophage infiltration levels. SARS-CoV-2 ' 'entry was increased in cholesterol-loaded primary macrophages and dependent, in part, on ' 'neuropilin-1. SARS-CoV-2 induced a robust inflammatory response in cultured macrophages and ' 'human atherosclerotic vascular explants with secretion of cytokines known to trigger ' 'cardiovascular events. Our data establish that SARS-CoV-2 infects coronary vessels, inducing ' 'plaque inflammation that could trigger acute cardiovascular complications and increase the ' 'long-term cardiovascular risk.</jats:p>', 'DOI': '10.1038/s44161-023-00336-5', 'type': 'journal-article', 'created': {'date-parts': [[2023, 9, 28]], 'date-time': '2023-09-28T16:02:03Z', 'timestamp': 1695916923000}, 'page': '899-916', 'update-policy': 'http://dx.doi.org/10.1007/springer_crossmark_policy', 'source': 'Crossref', 'is-referenced-by-count': 6, 'title': 'SARS-CoV-2 infection triggers pro-atherogenic inflammatory responses in human coronary vessels', 'prefix': '10.1038', 'volume': '2', 'author': [ { 'ORCID': 'http://orcid.org/0000-0002-3309-4563', 'authenticated-orcid': False, 'given': 'Natalia', 'family': 'Eberhardt', 'sequence': 'first', 'affiliation': []}, {'given': 'Maria Gabriela', 'family': 'Noval', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0003-1278-2516', 'authenticated-orcid': False, 'given': 'Ravneet', 'family': 'Kaur', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0003-1125-4631', 'authenticated-orcid': False, 'given': 'Letizia', 'family': 'Amadori', 'sequence': 'additional', 'affiliation': []}, {'given': 'Michael', 'family': 'Gildea', 'sequence': 'additional', 'affiliation': []}, {'given': 'Swathy', 'family': 'Sajja', 'sequence': 'additional', 'affiliation': []}, {'given': 'Dayasagar', 'family': 'Das', 'sequence': 'additional', 'affiliation': []}, {'given': 'Burak', 'family': 'Cilhoroz', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0001-6071-760X', 'authenticated-orcid': False, 'given': 'O’ Jay', 'family': 'Stewart', 'sequence': 'additional', 'affiliation': []}, {'given': 'Dawn M.', 'family': 'Fernandez', 'sequence': 'additional', 'affiliation': []}, {'given': 'Roza', 'family': 'Shamailova', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0001-7414-2317', 'authenticated-orcid': False, 'given': 'Andrea', 'family': 'Vasquez Guillen', 'sequence': 'additional', 'affiliation': []}, {'given': 'Sonia', 'family': 'Jangra', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0003-3156-3132', 'authenticated-orcid': False, 'given': 'Michael', 'family': 'Schotsaert', 'sequence': 'additional', 'affiliation': []}, {'given': 'Jonathan D.', 'family': 'Newman', 'sequence': 'additional', 'affiliation': []}, {'given': 'Peter', 'family': 'Faries', 'sequence': 'additional', 'affiliation': []}, {'given': 'Thomas', 'family': 'Maldonado', 'sequence': 'additional', 'affiliation': []}, {'given': 'Caron', 'family': 'Rockman', 'sequence': 'additional', 'affiliation': []}, {'given': 'Amy', 'family': 'Rapkiewicz', 'sequence': 'additional', 'affiliation': []}, {'given': 'Kenneth A.', 'family': 'Stapleford', 'sequence': 'additional', 'affiliation': []}, {'given': 'Navneet', 'family': 'Narula', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0003-2505-2547', 'authenticated-orcid': False, 'given': 'Kathryn J.', 'family': 'Moore', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0003-2473-6058', 'authenticated-orcid': False, 'given': 'Chiara', 'family': 'Giannarelli', 'sequence': 'additional', 'affiliation': []}], 'member': '297', 'published-online': {'date-parts': [[2023, 9, 28]]}, 'reference': [ { 'key': '336_CR1', 'doi-asserted-by': 'publisher', 'first-page': '270', 'DOI': '10.1038/s41579-022-00713-0', 'volume': '20', 'author': 'MM Lamers', 'year': '2022', 'unstructured': 'Lamers, M. M. & Haagmans, B. L. SARS-CoV-2 pathogenesis. Nat. Rev. ' 'Microbiol. 20, 270–284 (2022).', 'journal-title': 'Nat. Rev. Microbiol.'}, { 'key': '336_CR2', 'doi-asserted-by': 'publisher', 'first-page': '522', 'DOI': '10.1038/s41569-021-00668-4', 'volume': '19', 'author': 'SE Engelen', 'year': '2022', 'unstructured': 'Engelen, S. E., Robinson, A. J. B., Zurke, Y. X. & Monaco, C. ' 'Therapeutic strategies targeting inflammation and immunity in ' 'atherosclerosis: how to proceed? Nat. Rev. Cardiol. 19, 522–542 (2022).', 'journal-title': 'Nat. Rev. Cardiol.'}, { 'key': '336_CR3', 'doi-asserted-by': 'publisher', 'first-page': '599', 'DOI': '10.1016/S0140-6736(21)00896-5', 'volume': '398', 'author': 'I Katsoularis', 'year': '2021', 'unstructured': 'Katsoularis, I., Fonseca-Rodriguez, O., Farrington, P., Lindmark, K. & ' 'Fors Connolly, A. M. Risk of acute myocardial infarction and ischaemic ' 'stroke following COVID-19 in Sweden: a self-controlled case series and ' 'matched cohort study. Lancet 398, 599–607 (2021).', 'journal-title': 'Lancet'}, { 'key': '336_CR4', 'doi-asserted-by': 'publisher', 'first-page': '345', 'DOI': '10.1056/NEJMoa1702090', 'volume': '378', 'author': 'JC Kwong', 'year': '2018', 'unstructured': 'Kwong, J. C. et al. Acute myocardial infarction after ' 'laboratory-confirmed influenza infection. N. Engl. J. Med. 378, 345–353 ' '(2018).', 'journal-title': 'N. Engl. J. Med.'}, { 'key': '336_CR5', 'doi-asserted-by': 'publisher', 'first-page': '1366', 'DOI': '10.1001/jamaneurol.2020.2730', 'volume': '77', 'author': 'AE Merkler', 'year': '2020', 'unstructured': 'Merkler, A. E. et al. Risk of ischemic stroke in patients with ' 'Coronavirus Disease 2019 (COVID-19) vs patients with influenza. JAMA ' 'Neurol. 77, 1366–1372 (2020).', 'journal-title': 'JAMA Neurol.'}, { 'key': '336_CR6', 'doi-asserted-by': 'publisher', 'first-page': '583', 'DOI': '10.1038/s41591-022-01689-3', 'volume': '28', 'author': 'Y Xie', 'year': '2022', 'unstructured': 'Xie, Y., Xu, E., Bowe, B. & Al-Aly, Z. Long-term cardiovascular outcomes ' 'of COVID-19. Nat. Med. 28, 583–590 (2022).', 'journal-title': 'Nat. Med.'}, { 'key': '336_CR7', 'doi-asserted-by': 'publisher', 'first-page': '2255', 'DOI': '10.1056/NEJMra2026131', 'volume': '383', 'author': 'DC Fajgenbaum', 'year': '2020', 'unstructured': 'Fajgenbaum, D. C. & June, C. H. Cytokine storm. N. Engl. J. Med. 383, ' '2255–2273 (2020).', 'journal-title': 'N. Engl. J. Med.'}, { 'key': '336_CR8', 'doi-asserted-by': 'publisher', 'first-page': '17', 'DOI': '10.1038/s41421-021-00249-2', 'volume': '7', 'author': 'J Liu', 'year': '2021', 'unstructured': 'Liu, J. et al. SARS-CoV-2 cell tropism and multiorgan infection. Cell ' 'Discov. 7, 17 (2021).', 'journal-title': 'Cell Discov.'}, { 'key': '336_CR9', 'doi-asserted-by': 'publisher', 'first-page': '585', 'DOI': '10.1038/s41586-022-04802-1', 'volume': '606', 'author': 'E Sefik', 'year': '2022', 'unstructured': 'Sefik, E. et al. Inflammasome activation in infected macrophages drives ' 'COVID-19 pathology. Nature 606, 585–593 (2022).', 'journal-title': 'Nature'}, { 'key': '336_CR10', 'doi-asserted-by': 'publisher', 'first-page': '709', 'DOI': '10.1038/nri3520', 'volume': '13', 'author': 'KJ Moore', 'year': '2013', 'unstructured': 'Moore, K. J., Sheedy, F. J. & Fisher, E. A. Macrophages in ' 'atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 13, 709–721 ' '(2013).', 'journal-title': 'Nat. Rev. Immunol.'}, { 'key': '336_CR11', 'doi-asserted-by': 'publisher', 'first-page': '1982', 'DOI': '10.1161/ATVBAHA.119.312864', 'volume': '40', 'author': 'N Narula', 'year': '2020', 'unstructured': 'Narula, N., Olin, J. W. & Narula, N. Pathologic disparities between ' 'peripheral artery disease and coronary artery disease. Arterioscler. ' 'Thromb. Vasc. Biol. 40, 1982–1989 (2020).', 'journal-title': 'Arterioscler. Thromb. Vasc. Biol.'}, { 'key': '336_CR12', 'doi-asserted-by': 'publisher', 'first-page': '772', 'DOI': '10.1016/j.atherosclerosis.2015.05.011', 'volume': '241', 'author': 'F Otsuka', 'year': '2015', 'unstructured': 'Otsuka, F. et al. Natural progression of atherosclerosis from pathologic ' 'intimal thickening to late fibroatheroma in human coronary arteries: a ' 'pathology study. Atherosclerosis 241, 772–782 (2015).', 'journal-title': 'Atherosclerosis'}, { 'key': '336_CR13', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41467-022-33218-8', 'volume': '13', 'author': 'TD Saccon', 'year': '2022', 'unstructured': 'Saccon, T. D. et al. SARS-CoV-2 infects adipose tissue in a fat depot- ' 'and viral lineage-dependent manner. Nat. Commun. 13, 5722 (2022).', 'journal-title': 'Nat. Commun.'}, { 'key': '336_CR14', 'doi-asserted-by': 'publisher', 'first-page': 'eabm9151', 'DOI': '10.1126/scitranslmed.abm9151', 'volume': '14', 'author': 'GJ Martinez-Colon', 'year': '2022', 'unstructured': 'Martinez-Colon, G. J. et al. SARS-CoV-2 infection drives an inflammatory ' 'response in human adipose tissue through infection of adipocytes and ' 'macrophages. Sci. Transl. Med. 14, eabm9151 (2022).', 'journal-title': 'Sci. Transl. Med.'}, { 'key': '336_CR15', 'doi-asserted-by': 'publisher', 'first-page': '1280', 'DOI': '10.1038/s41591-019-0512-5', 'volume': '25', 'author': 'RC Wirka', 'year': '2019', 'unstructured': 'Wirka, R. C. et al. Atheroprotective roles of smooth muscle cell ' 'phenotypic modulation and the TCF21 disease gene as revealed by ' 'single-cell analysis. Nat. Med. 25, 1280–1289 (2019).', 'journal-title': 'Nat. Med.'}, { 'key': '336_CR16', 'doi-asserted-by': 'publisher', 'first-page': '15818', 'DOI': '10.1073/pnas.2006348117', 'volume': '117', 'author': 'Y Wang', 'year': '2020', 'unstructured': 'Wang, Y. et al. Clonally expanding smooth muscle cells promote ' 'atherosclerosis by escaping efferocytosis and activating the complement ' 'cascade. Proc. Natl Acad. Sci. USA 117, 15818–15826 (2020).', 'journal-title': 'Proc. Natl Acad. Sci. USA'}, { 'key': '336_CR17', 'doi-asserted-by': 'publisher', 'first-page': '13531', 'DOI': '10.1073/pnas.1735526100', 'volume': '100', 'author': 'JX Rong', 'year': '2003', 'unstructured': 'Rong, J. X., Shapiro, M., Trogan, E. & Fisher, E. A. ' 'Transdifferentiation of mouse aortic smooth muscle cells to a ' 'macrophage-like state after cholesterol loading. Proc. Natl Acad. Sci. ' 'USA 100, 13531–13536 (2003).', 'journal-title': 'Proc. Natl Acad. Sci. USA'}, { 'key': '336_CR18', 'doi-asserted-by': 'publisher', 'first-page': '628', 'DOI': '10.1038/nm.3866', 'volume': '21', 'author': 'LS Shankman', 'year': '2015', 'unstructured': 'Shankman, L. S. et al. KLF4-dependent phenotypic modulation of smooth ' 'muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat. ' 'Med. 21, 628–637 (2015).', 'journal-title': 'Nat. Med.'}, { 'key': '336_CR19', 'doi-asserted-by': 'publisher', 'first-page': '662', 'DOI': '10.1161/CIRCRESAHA.115.304634', 'volume': '115', 'author': 'S Feil', 'year': '2014', 'unstructured': 'Feil, S. et al. Transdifferentiation of vascular smooth muscle cells to ' 'macrophage-like cells during atherogenesis. Circ. Res. 115, 662–667 ' '(2014).', 'journal-title': 'Circ. Res.'}, { 'key': '336_CR20', 'doi-asserted-by': 'publisher', 'first-page': '1551', 'DOI': '10.1161/CIRCULATIONAHA.113.005015', 'volume': '129', 'author': 'S Allahverdian', 'year': '2014', 'unstructured': 'Allahverdian, S., Chehroudi, A. C., McManus, B. M., Abraham, T. & ' 'Francis, G. A. Contribution of intimal smooth muscle cells to ' 'cholesterol accumulation and macrophage-like cells in human ' 'atherosclerosis. Circulation 129, 1551–1559 (2014).', 'journal-title': 'Circulation'}, { 'key': '336_CR21', 'doi-asserted-by': 'publisher', 'first-page': '841', 'DOI': '10.1016/j.chom.2020.04.004', 'volume': '27', 'author': 'X Xie', 'year': '2020', 'unstructured': 'Xie, X. et al. An infectious cDNA clone of SARS-CoV-2. Cell Host Microbe ' '27, 841–848 (2020).', 'journal-title': 'Cell Host Microbe'}, { 'key': '336_CR22', 'doi-asserted-by': 'publisher', 'first-page': '424', 'DOI': '10.1016/j.chom.2015.09.009', 'volume': '18', 'author': 'M Combe', 'year': '2015', 'unstructured': 'Combe, M., Garijo, R., Geller, R., Cuevas, J. M. & Sanjuan, R. ' 'Single-cell analysis of RNA virus infection identifies multiple ' 'genetically diverse viral genomes within single infectious units. Cell ' 'Host Microbe 18, 424–432 (2015).', 'journal-title': 'Cell Host Microbe'}, { 'key': '336_CR23', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/ncomms9938', 'volume': '6', 'author': 'FS Heldt', 'year': '2015', 'unstructured': 'Heldt, F. S., Kupke, S. Y., Dorl, S., Reichl, U. & Frensing, T. ' 'Single-cell analysis and stochastic modelling unveil large cell-to-cell ' 'variability in influenza A virus infection. Nat. Commun. 6, 8938 (2015).', 'journal-title': 'Nat. Commun.'}, { 'key': '336_CR24', 'doi-asserted-by': 'publisher', 'first-page': '39', 'DOI': '10.1016/j.virol.2008.10.031', 'volume': '385', 'author': 'Y Zhu', 'year': '2009', 'unstructured': 'Zhu, Y., Yongky, A. & Yin, J. Growth of an RNA virus in single cells ' 'reveals a broad fitness distribution. Virology 385, 39–46 (2009).', 'journal-title': 'Virology'}, { 'key': '336_CR25', 'doi-asserted-by': 'publisher', 'first-page': '635', 'DOI': '10.1073/pnas.1910537117', 'volume': '117', 'author': 'EM Cohen', 'year': '2020', 'unstructured': 'Cohen, E. M., Avital, N., Shamay, M. & Kobiler, O. Abortive herpes ' 'simplex virus infection of nonneuronal cells results in quiescent viral ' 'genomes that can reactivate. Proc. Natl Acad. Sci. USA 117, 635–640 ' '(2020).', 'journal-title': 'Proc. Natl Acad. Sci. USA'}, { 'key': '336_CR26', 'doi-asserted-by': 'publisher', 'first-page': '5922', 'DOI': '10.1128/JVI.07060-11', 'volume': '86', 'author': 'LJ Ioannidis', 'year': '2012', 'unstructured': 'Ioannidis, L. J., Verity, E. E., Crawford, S., Rockman, S. P. & Brown, ' 'L. E. Abortive replication of influenza virus in mouse dendritic cells. ' 'J. Virol. 86, 5922–5925 (2012).', 'journal-title': 'J. Virol.'}, { 'key': '336_CR27', 'doi-asserted-by': 'publisher', 'first-page': '463', 'DOI': '10.1038/s41586-020-2588-y', 'volume': '584', 'author': 'C Lucas', 'year': '2020', 'unstructured': 'Lucas, C. et al. Longitudinal analyses reveal immunological misfiring in ' 'severe COVID-19. Nature 584, 463–469 (2020).', 'journal-title': 'Nature'}, { 'key': '336_CR28', 'doi-asserted-by': 'publisher', 'first-page': '1416', 'DOI': '10.1038/s41590-021-01035-8', 'volume': '22', 'author': 'D Munnur', 'year': '2021', 'unstructured': 'Munnur, D. et al. Altered ISGylation drives aberrant ' 'macrophage-dependent immune responses during SARS-CoV-2 infection. Nat. ' 'Immunol. 22, 1416–1427 (2021).', 'journal-title': 'Nat. Immunol.'}, { 'key': '336_CR29', 'doi-asserted-by': 'publisher', 'first-page': '103588', 'DOI': '10.1016/j.isci.2021.103588', 'volume': '25', 'author': 'J Cheng', 'year': '2022', 'unstructured': 'Cheng, J. et al. IL-27 induces IFN/STAT1-dependent genes and enhances ' 'function of TIGIT+ HIVGag-specific T cells. iScience 25, 103588 (2022).', 'journal-title': 'iScience'}, { 'key': '336_CR30', 'doi-asserted-by': 'publisher', 'first-page': '368', 'DOI': '10.1016/j.tim.2011.03.007', 'volume': '19', 'author': 'NS Heaton', 'year': '2011', 'unstructured': 'Heaton, N. S. & Randall, G. Multifaceted roles for lipids in viral ' 'infection. Trends Microbiol 19, 368–375 (2011).', 'journal-title': 'Trends Microbiol'}, { 'key': '336_CR31', 'doi-asserted-by': 'crossref', 'unstructured': 'Cloherty, A. P. M., Olmstead, A. D., Ribeiro, C. M. S. & Jean, F. ' 'Hijacking of lipid droplets by hepatitis C, dengue and Zika viruses—from ' 'viral protein moonlighting to extracellular release. Int. J. Mol. Sci. ' '21, 7901 (2020).', 'DOI': '10.3390/ijms21217901'}, { 'key': '336_CR32', 'doi-asserted-by': 'publisher', 'first-page': '100129', 'DOI': '10.1016/j.jlr.2021.100129', 'volume': '62', 'author': 'KN Theken', 'year': '2021', 'unstructured': 'Theken, K. N., Tang, S. Y., Sengupta, S. & FitzGerald, G. A. The roles ' 'of lipids in SARS-CoV-2 viral replication and the host immune response. ' 'J. Lipid Res. 62, 100129 (2021).', 'journal-title': 'J. Lipid Res.'}, { 'key': '336_CR33', 'doi-asserted-by': 'publisher', 'first-page': '397', 'DOI': '10.1038/34929', 'volume': '391', 'author': 'KL Collins', 'year': '1998', 'unstructured': 'Collins, K. L., Chen, B. K., Kalams, S. A., Walker, B. D. & Baltimore, ' 'D. HIV-1 Nef protein protects infected primary cells against killing by ' 'cytotoxic T lymphocytes. Nature 391, 397–401 (1998).', 'journal-title': 'Nature'}, { 'key': '336_CR34', 'doi-asserted-by': 'publisher', 'first-page': '503', 'DOI': '10.1038/nri2575', 'volume': '9', 'author': 'TH Hansen', 'year': '2009', 'unstructured': 'Hansen, T. H. & Bouvier, M. MHC class I antigen presentation: learning ' 'from viral evasion strategies. Nat. Rev. Immunol. 9, 503–513 (2009).', 'journal-title': 'Nat. Rev. Immunol.'}, { 'key': '336_CR35', 'doi-asserted-by': 'publisher', 'first-page': '101585', 'DOI': '10.1016/j.isci.2020.101585', 'volume': '23', 'author': 'J Bizzotto', 'year': '2020', 'unstructured': 'Bizzotto, J. et al. SARS-CoV-2 infection boosts MX1 antiviral effector ' 'in COVID-19 patients. iScience 23, 101585 (2020).', 'journal-title': 'iScience'}, { 'key': '336_CR36', 'doi-asserted-by': 'publisher', 'first-page': '145', 'DOI': '10.1038/s41586-022-04421-w', 'volume': '603', 'author': 'JD Domizio', 'year': '2022', 'unstructured': 'Domizio, J. D. et al. The cGAS–STING pathway drives type I IFN ' 'immunopathology in COVID-19. Nature 603, 145–151 (2022).', 'journal-title': 'Nature'}, { 'key': '336_CR37', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41467-021-24817-y', 'volume': '12', 'author': 'C Prelli Bozzo', 'year': '2021', 'unstructured': 'Prelli Bozzo, C. et al. IFITM proteins promote SARS-CoV-2 infection and ' 'are targets for virus inhibition in vitro. Nat. Commun. 12, 4584 (2021).', 'journal-title': 'Nat. Commun.'}, { 'key': '336_CR38', 'doi-asserted-by': 'publisher', 'first-page': '216', 'DOI': '10.1038/s41569-019-0265-3', 'volume': '17', 'author': 'T Kuznetsova', 'year': '2020', 'unstructured': 'Kuznetsova, T., Prange, K. H. M., Glass, C. K. & de Winther, M. P. J. ' 'Transcriptional and epigenetic regulation of macrophages in ' 'atherosclerosis. Nat. Rev. Cardiol. 17, 216–228 (2020).', 'journal-title': 'Nat. Rev. Cardiol.'}, { 'key': '336_CR39', 'doi-asserted-by': 'publisher', 'first-page': '669', 'DOI': '10.1016/j.cell.2005.08.012', 'volume': '122', 'author': 'RB Seth', 'year': '2005', 'unstructured': 'Seth, R. B., Sun, L., Ea, C. K. & Chen, Z. J. Identification and ' 'characterization of MAVS, a mitochondrial antiviral signaling protein ' 'that activates NF-κB and IRF 3. Cell 122, 669–682 (2005).', 'journal-title': 'Cell'}, { 'key': '336_CR40', 'first-page': '178', 'volume': '21', 'author': 'JM Minkoff', 'year': '2023', 'unstructured': 'Minkoff, J. M. & tenOever, B. Innate immune evasion strategies of ' 'SARS-CoV-2. Nat. Rev. Microbiol. 21, 178–194 (2023).', 'journal-title': 'Nat. Rev. Microbiol.'}, { 'key': '336_CR41', 'doi-asserted-by': 'publisher', 'first-page': '835', 'DOI': '10.1038/s41423-023-01039-4', 'volume': '20', 'author': 'O Garcia-Nicolas', 'year': '2023', 'unstructured': 'Garcia-Nicolas, O., Godel, A., Zimmer, G. & Summerfield, A. Macrophage ' 'phagocytosis of SARS-CoV-2-infected cells mediates potent plasmacytoid ' 'dendritic cell activation. Cell. Mol. Immunol. 20, 835–849 (2023).', 'journal-title': 'Cell. Mol. Immunol.'}, { 'key': '336_CR42', 'doi-asserted-by': 'publisher', 'first-page': '197', 'DOI': '10.1146/annurev.immunol.20.083001.084359', 'volume': '20', 'author': 'CA Janeway Jr', 'year': '2002', 'unstructured': 'Janeway, C. A.Jr & Medzhitov, R. Innate immune recognition. Annu. Rev. ' 'Immunol. 20, 197–216 (2002).', 'journal-title': 'Annu. Rev. Immunol.'}, { 'key': '336_CR43', 'doi-asserted-by': 'publisher', 'first-page': '142', 'DOI': '10.1016/j.chom.2016.01.006', 'volume': '19', 'author': 'BR tenOever', 'year': '2016', 'unstructured': 'tenOever, B. R. The evolution of antiviral defense systems. Cell Host ' 'Microbe 19, 142–149 (2016).', 'journal-title': 'Cell Host Microbe'}, { 'key': '336_CR44', 'doi-asserted-by': 'publisher', 'first-page': '1036', 'DOI': '10.1016/j.cell.2020.04.026', 'volume': '181', 'author': 'D Blanco-Melo', 'year': '2020', 'unstructured': 'Blanco-Melo, D. et al. Imbalanced host response to SARS-CoV-2 drives ' 'development of COVID-19. Cell 181, 1036–1045 (2020).', 'journal-title': 'Cell'}, { 'key': '336_CR45', 'doi-asserted-by': 'publisher', 'first-page': '907', 'DOI': '10.1016/j.immuni.2019.03.025', 'volume': '50', 'author': 'HM Lazear', 'year': '2019', 'unstructured': 'Lazear, H. M., Schoggins, J. W. & Diamond, M. S. Shared and distinct ' 'functions of type I and type III interferons. Immunity 50, 907–923 ' '(2019).', 'journal-title': 'Immunity'}, { 'key': '336_CR46', 'doi-asserted-by': 'publisher', 'first-page': '1728', 'DOI': '10.1161/CIRCRESAHA.121.319077', 'volume': '128', 'author': 'PM Ridker', 'year': '2021', 'unstructured': 'Ridker, P. M. & Rane, M. Interleukin-6 signaling and anti-interleukin-6 ' 'therapeutics in cardiovascular disease. Circ. Res. 128, 1728–1746 ' '(2021).', 'journal-title': 'Circ. Res.'}, { 'key': '336_CR47', 'doi-asserted-by': 'publisher', 'first-page': '1119', 'DOI': '10.1056/NEJMoa1707914', 'volume': '377', 'author': 'PM Ridker', 'year': '2017', 'unstructured': 'Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for ' 'atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).', 'journal-title': 'N. Engl. J. Med.'}, { 'key': '336_CR48', 'doi-asserted-by': 'publisher', 'first-page': '1594', 'DOI': '10.1161/CIRCULATIONAHA.107.729125', 'volume': '117', 'author': 'A Zernecke', 'year': '2008', 'unstructured': 'Zernecke, A., Bernhagen, J. & Weber, C. Macrophage migration inhibitory ' 'factor in cardiovascular disease. Circulation 117, 1594–1602 (2008).', 'journal-title': 'Circulation'}, { 'key': '336_CR49', 'doi-asserted-by': 'publisher', 'first-page': '820', 'DOI': '10.1038/nm.3890', 'volume': '21', 'author': 'J Wang', 'year': '2015', 'unstructured': 'Wang, J. et al. Interleukin 18 function in atherosclerosis is mediated ' 'by the interleukin 18 receptor and the Na-Cl co-transporter. Nat. Med. ' '21, 820–826 (2015).', 'journal-title': 'Nat. Med.'}, { 'key': '336_CR50', 'unstructured': 'Bastard, P. et al. Autoantibodies against type I IFNs in patients with ' 'life-threatening COVID-19. Science 370, eabd4585 (2020).'}, { 'key': '336_CR51', 'doi-asserted-by': 'publisher', 'first-page': '271', 'DOI': '10.1016/j.cell.2020.02.052', 'volume': '181', 'author': 'M Hoffmann', 'year': '2020', 'unstructured': 'Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 ' 'and is blocked by a clinically proven protease inhibitor. Cell 181, ' '271–280 (2020).', 'journal-title': 'Cell'}, { 'key': '336_CR52', 'doi-asserted-by': 'publisher', 'first-page': '21', 'DOI': '10.1038/s41392-020-00460-9', 'volume': '6', 'author': 'I Kyrou', 'year': '2021', 'unstructured': 'Kyrou, I., Randeva, H. S., Spandidos, D. A. & Karteris, E. Not only ' 'ACE2—the quest for additional host cell mediators of SARS-CoV-2 ' 'infection: neuropilin-1 (NRP1) as a novel SARS-CoV-2 host cell entry ' 'mediator implicated in COVID-19. Signal Transduct. Target. Ther. 6, 21 ' '(2021).', 'journal-title': 'Signal Transduct. Target. Ther.'}, { 'key': '336_CR53', 'doi-asserted-by': 'publisher', 'first-page': '856', 'DOI': '10.1126/science.abd2985', 'volume': '370', 'author': 'L Cantuti-Castelvetri', 'year': '2020', 'unstructured': 'Cantuti-Castelvetri, L. et al. Neuropilin-1 facilitates SARS-CoV-2 cell ' 'entry and infectivity. Science 370, 856–860 (2020).', 'journal-title': 'Science'}, { 'key': '336_CR54', 'doi-asserted-by': 'publisher', 'first-page': '861', 'DOI': '10.1126/science.abd3072', 'volume': '370', 'author': 'JL Daly', 'year': '2020', 'unstructured': 'Daly, J. L. et al. Neuropilin-1 is a host factor for SARS-CoV-2 ' 'infection. Science 370, 861–865 (2020).', 'journal-title': 'Science'}, { 'key': '336_CR55', 'doi-asserted-by': 'publisher', 'first-page': '245', 'DOI': '10.1038/s41587-021-01033-z', 'volume': '40', 'author': 'E Dann', 'year': '2022', 'unstructured': 'Dann, E., Henderson, N. C., Teichmann, S. A., Morgan, M. D. & Marioni, ' 'J. C. Differential abundance testing on single-cell data using k-nearest ' 'neighbor graphs. Nat. Biotechnol. 40, 245–253 (2022).', 'journal-title': 'Nat. Biotechnol.'}, { 'key': '336_CR56', 'doi-asserted-by': 'publisher', 'first-page': '1127', 'DOI': '10.1161/CIRCRESAHA.118.312804', 'volume': '123', 'author': 'K Kim', 'year': '2018', 'unstructured': 'Kim, K. et al. Transcriptome analysis reveals nonfoamy rather than foamy ' 'plaque macrophages are proinflammatory in atherosclerotic murine models. ' 'Circ. Res. 123, 1127–1142 (2018).', 'journal-title': 'Circ. Res.'}, { 'key': '336_CR57', 'doi-asserted-by': 'publisher', 'first-page': '2040', 'DOI': '10.1073/pnas.1008721108', 'volume': '108', 'author': 'BD Solomon', 'year': '2011', 'unstructured': 'Solomon, B. D., Mueller, C., Chae, W. J., Alabanza, L. M. & Bynoe, M. S. ' 'Neuropilin-1 attenuates autoreactivity in experimental autoimmune ' 'encephalomyelitis. Proc. Natl Acad. Sci. USA 108, 2040–2045 (2011).', 'journal-title': 'Proc. Natl Acad. Sci. USA'}, { 'key': '336_CR58', 'doi-asserted-by': 'publisher', 'first-page': '2881', 'DOI': '10.1096/fj.201601238R', 'volume': '31', 'author': 'X Dai', 'year': '2017', 'unstructured': 'Dai, X. et al. A novel role for myeloid cell-specific neuropilin 1 in ' 'mitigating sepsis. FASEB J. 31, 2881–2892 (2017).', 'journal-title': 'FASEB J.'}, { 'key': '336_CR59', 'doi-asserted-by': 'publisher', 'first-page': '758', 'DOI': '10.1038/s41586-022-05542-y', 'volume': '612', 'author': 'SR Stein', 'year': '2022', 'unstructured': 'Stein, S. R. et al. SARS-CoV-2 infection and persistence in the human ' 'body and brain at autopsy. Nature 612, 758–763 (2022).', 'journal-title': 'Nature'}, { 'key': '336_CR60', 'doi-asserted-by': 'publisher', 'first-page': '1281', 'DOI': '10.1001/jamacardio.2020.3551', 'volume': '5', 'author': 'D Lindner', 'year': '2020', 'unstructured': 'Lindner, D. et al. Association of cardiac infection with SARS-CoV-2 in ' 'confirmed COVID-19 autopsy cases. JAMA Cardiol. 5, 1281–1285 (2020).', 'journal-title': 'JAMA Cardiol.'}, { 'key': '336_CR61', 'doi-asserted-by': 'publisher', 'first-page': '1166', 'DOI': '10.1038/nm.3258', 'volume': '19', 'author': 'CS Robbins', 'year': '2013', 'unstructured': 'Robbins, C. S. et al. Local proliferation dominates lesional macrophage ' 'accumulation in atherosclerosis. Nat. Med. 19, 1166–1172 (2013).', 'journal-title': 'Nat. Med.'}, { 'key': '336_CR62', 'doi-asserted-by': 'publisher', 'first-page': '1234', 'DOI': '10.1038/s41591-018-0059-x', 'volume': '24', 'author': 'G Bajpai', 'year': '2018', 'unstructured': 'Bajpai, G. et al. The human heart contains distinct macrophage subsets ' 'with divergent origins and functions. Nat. Med. 24, 1234–1245 (2018).', 'journal-title': 'Nat. Med.'}, { 'key': '336_CR63', 'doi-asserted-by': 'publisher', 'first-page': '194', 'DOI': '10.1161/CIRCRESAHA.117.312444', 'volume': '122', 'author': 'CM Brewer', 'year': '2018', 'unstructured': 'Brewer, C. M. & Majesky, M. W. Branch point smooth muscle cells ' 'highlighted by novel lineage tracking approach. Circ. Res. 122, 194–196 ' '(2018).', 'journal-title': 'Circ. Res.'}, { 'key': '336_CR64', 'doi-asserted-by': 'publisher', 'first-page': 'e0125721', 'DOI': '10.1128/JVI.01257-21', 'volume': '95', 'author': 'BE Nilsson-Payant', 'year': '2021', 'unstructured': 'Nilsson-Payant, B. E. et al. The NF-κB transcriptional footprint is ' 'essential for SARS-CoV-2 replication. J. Virol. 95, e0125721 (2021).', 'journal-title': 'J. Virol.'}, { 'key': '336_CR65', 'doi-asserted-by': 'publisher', 'first-page': '183', 'DOI': '10.1007/s11060-018-2788-6', 'volume': '138', 'author': 'S Wang', 'year': '2018', 'unstructured': 'Wang, S. et al. Programmed death ligand 1 expression and tumor ' 'infiltrating lymphocytes in neurofibromatosis type 1 and 2 associated ' 'tumors. J. Neurooncol. 138, 183–190 (2018).', 'journal-title': 'J. Neurooncol.'}, { 'key': '336_CR66', 'doi-asserted-by': 'publisher', 'first-page': '1576', 'DOI': '10.1038/s41591-019-0590-4', 'volume': '25', 'author': 'DM Fernandez', 'year': '2019', 'unstructured': 'Fernandez, D. M. et al. Single-cell immune landscape of human ' 'atherosclerotic plaques. Nat. Med. 25, 1576–1588 (2019).', 'journal-title': 'Nat. Med.'}, { 'key': '336_CR67', 'doi-asserted-by': 'publisher', 'first-page': '3573', 'DOI': '10.1016/j.cell.2021.04.048', 'volume': '184', 'author': 'Y Hao', 'year': '2021', 'unstructured': 'Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell ' '184, 3573–3587 (2021).', 'journal-title': 'Cell'}, { 'key': '336_CR68', 'doi-asserted-by': 'publisher', 'first-page': '1289', 'DOI': '10.1038/s41592-019-0619-0', 'volume': '16', 'author': 'I Korsunsky', 'year': '2019', 'unstructured': 'Korsunsky, I. et al. Fast, sensitive and accurate integration of ' 'single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).', 'journal-title': 'Nat. Methods'}, { 'key': '336_CR69', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41598-021-84913-3', 'volume': '11', 'author': 'MG Noval', 'year': '2021', 'unstructured': 'Noval, M. G. et al. Antibody isotype diversity against SARS-CoV-2 is ' 'associated with differential serum neutralization capacities. Sci Rep. ' '11, 5538 (2021).', 'journal-title': 'Sci Rep.'}, { 'key': '336_CR70', 'doi-asserted-by': 'publisher', 'first-page': 'W90', 'DOI': '10.1093/nar/gkw377', 'volume': '44', 'author': 'MV Kuleshov', 'year': '2016', 'unstructured': 'Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment ' 'analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).', 'journal-title': 'Nucleic Acids Res.'}, { 'key': '336_CR71', 'doi-asserted-by': 'publisher', 'first-page': '128', 'DOI': '10.1186/1471-2105-14-128', 'volume': '14', 'author': 'EY Chen', 'year': '2013', 'unstructured': 'Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene ' 'list enrichment analysis tool. BMC Bioinformatics. 14, 128 (2013).', 'journal-title': 'BMC Bioinformatics.'}], 'container-title': 'Nature Cardiovascular Research', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://www.nature.com/articles/s44161-023-00336-5.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://www.nature.com/articles/s44161-023-00336-5', 'content-type': 'text/html', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://www.nature.com/articles/s44161-023-00336-5.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2023, 10, 18]], 'date-time': '2023-10-18T13:10:01Z', 'timestamp': 1697634601000}, 'score': 1, 'resource': {'primary': {'URL': 'https://www.nature.com/articles/s44161-023-00336-5'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2023, 9, 28]]}, 'references-count': 71, 'journal-issue': {'issue': '10', 'published-online': {'date-parts': [[2023, 10]]}}, 'alternative-id': ['336'], 'URL': 'http://dx.doi.org/10.1038/s44161-023-00336-5', 'relation': { 'has-review': [ { 'id-type': 'doi', 'id': '10.3410/f.742826094.793601248', 'asserted-by': 'object'}]}, 'ISSN': ['2731-0590'], 'container-title-short': 'Nat Cardiovasc Res', 'published': {'date-parts': [[2023, 9, 28]]}, 'assertion': [ { 'value': '13 February 2023', 'order': 1, 'name': 'received', 'label': 'Received', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '23 August 2023', 'order': 2, 'name': 'accepted', 'label': 'Accepted', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '28 September 2023', 'order': 3, 'name': 'first_online', 'label': 'First Online', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': 'The M.S. laboratory has received unrelated research funding in sponsored ' 'research agreements from ArgenX N.V., Moderna and Phio Pharmaceuticals, which ' 'has no competing interest with this work. The authors declare no other ' 'competing interests.', 'order': 1, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Competing interests'}}]}
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit